DL之DNN优化技术:DNN优化器的参数优化—更新参数的四种最优化方法(SGD/Momentum/AdaGrad/Adam)的案例理解、图表可视化比较
文章作者:佚名 人气:发表时间:2024-04-29 04:07:10
深度神经网络(DNN)在各种任务中取得了前所未有的成功,但是,这些模型性能直接取决于它们的超参数的设置。在实践中,优化超参数仍是设计深度神经网络的一大障碍。在这项工作中,我们建议使用粒子群优化算法(PSO)来选择和优化模型参数。在MNIST数据集上的实验结果显示:通过PSO优化的CNN模型可以得到不错的分类精度,此外,PSO 还可以提高现有模型结构的性能,PSO是自动化超参数选择和有效利用计算资源的有效技术。
针 对CNN 算法的收敛速度较慢、过 拟合 等问题, 文章提出一种基于PSO和 CNN 模型的图像分类方法,在分析完CNN各超参数对其性能的影响后,引入 PSO 算法进行寻优以增强CNN网络模型的特征提取能力,模型将CNN算法中需要训练的参数作为粒子进行优化,将 更 新 的 参 数 用 于CNN 算 法 的 前 向 传播,调整网络连接权矩阵迭代,直到误差收敛,停止算法,以达到最终的模型优化。
同类文章排行
- 精雕机的错位原因有那些?
- 数控精雕机主轴加工后的保养方法
- cnc高光机在使用时候需要注意什么
- 精雕机不归零加工完闭后不回工作原点?
- 主轴达不到指定转速?
- 一个高端数控系统对精雕机的重要性
- 高光机主轴轴承容易坏的原因
- 手机边框高光机的特点
- 开机无反应,机床没电,手柄无反应,不显示?
- 五金高光机的质量判断的四大标准